

DNasel, RNase-free (500 u)

For Research Use Only

Cat. No.:MO5401

Supplied with: 1ml of 10X Reaction Buffer with $MgCl_2$, 1ml of 50mM EDTA

Concentration: 1u/ μ l

Store at -20°C

Description:

DNasel is an endonuclease that digests single- and double-stranded DNA. It hydrolyzes phosphodiester bonds producing Mono and oligodeoxyribo- nucleotides with 5'-phosphate and 3'-OH groups. The enzyme activity is strictly dependent on Ca^{2+} and is activated by Mg^{2+} or Mn^{2+} ions:

- In the presence of Mg^{2+} , DNasel cleaves each strand of ds DNA independently, in a statistically random fashion;
- In the presence of Mn^{2+} , the enzyme cleaves both DNA strands at approximately the same site, producing DNA fragments with blunt ends or with one or two nucleotide overhangs .

Applications:

- Preparation of DNA-free RNA.
- Removal of template DNA following in vitro transcription, see protocol on reverse page.
- Preparation of DNA-free RNA prior to RT-PCR and RT-qPCR , see protocol on reverse page.
- DNA labeling by nick-translation in conjunction with DNA Polymerase I, see protocol on reverse page.
- Studies of DNA-protein interactions by DNasel, RNase-free footprinting .
- Generation of a library of randomly overlapping DNA inserts. Reaction buffer containing Mn^{2+} is used .

Source:

E.coli cells with a cloned gene encoding bovine DNasel.

Molecular Weight:

29 kDa Monomer.

Definition of Activity Unit:

One unit of the enzyme completely degrades 1 μ g of plasmid DNA in 10min at 37°C.

Enzyme activity is assayed in the following

mixture: 10mM Tris-HCl (pH 7.5 at 25°C), 2.5mM $MgCl_2$, 0.1mM $CaCl_2$, 1 μ g of pUC19 DNA.

One DNasel unit is equivalent to 0.3 Kunitz unit.

Storage Buffer

50mM Tris-HCl (pH 7.5), 10mM $CaCl_2$ and 50% (v/v) glycerol.

10X Reaction Buffer with $MgCl_2$

100mM Tris-HCl (pH 7.5 at 25°C), 25mM $MgCl_2$, 1mM $CaCl_2$.

Inhibition and Inactivation

- Inhibitors: Metal chelators, transitionMetals (e.g., Zn) in Millimolar concentrations, SDS (even at concentrations less than 0.1%), reducing agents (DTT and 2-Mercaptoethanol), ionic strength above 50-100mM.
- Inactivated by heating at 65°C for 10Min in the presence of EGTA or EDTA (use at least 1mol of EGTA/EDTA per 2⁺ Mn²⁺ /Mg²⁺).

Note:

DNasel is sensitive to physical denaturation .Mix gently by inverting the tube. Do not vortex.

Removal of genomic DNA from RNA preparations

1. Add to an RNase-free tube:

RNA	1 μ g
10X reaction buffer with $MgCl_2$	1 μ l
DNasel, RNase-free	0.5 μ l (0.5u)
DEPC-treated Water	to 10 μ l

2. Incubate at 37°C for 30min.

3. Add 1 μ l 50mM EDTA and incubate at 65°C for 10min.

RNA hydrolyzes during heating with divalent cations in the absence of a chelating agent. Alternatively, use phenol/chloroform extraction.

4. Use the prepared RNA as a template for reverse transcriptase.

Note:

- Do not use More than 1 u of DNasel, RNase-free per 1 μ g of RNA.
- Volumes of the reaction Mixture and 50mM EDTA solution can be scaled up for larger amounts of RNA. The recommended final concentration of RNA is 0.1 μ g/ μ l.
- RiboLockTM RNase Inhibitor, typically at 1 u/ μ l, can also be included in the reaction Mixture to prevent RNA degradation.

Removal of template DNA after *in vitro* transcription

1. Add 2u of DNasel, RNase-free per 1 μ g of template DNA directly to a transcription reaction Mixture. In some cases, the amount of enzyme should be determined empirically.
2. Incubate at 37°C for 15Minutes.
3. Inactivate DNasel by phenol/chloroform extraction.

DNA labeling by nick-translation

1. Mix the following components:
2. Immediately incubate at 15°C for 15-60min.
3. Terminate the reaction by adding 1 μ l of 0.5M EDTA, pH 8.0.

10X reaction buffer for DNA Polymerase I	2.5 μ l
Mixture of 3 dNTPs, 1mM each (without the labeled dNTP)	1.25 μ l
[32P]-dNTP, ~110 TBq/mmol (3000 Ci/mmol)	1.85-3.7MBq (50-100 μ Ci)
DNasel, RNase-free freshly diluted to 0.002 u/ μ l	0.5 μ l
DNA Polymerase I Template DNA	0.5-1.5 μ l (5-15u) 0.25 μ g
Water, nuclease-free	to 25 μ l

4. Take an aliquot (1 μ l) to determine the efficiency of label incorporation. A specific activity of at least 10^8 cpm/ μ g DNA is expected.

Note:

- DNasel, RNase-free can be diluted with 1X reaction buffer for DNA Polymerase I: 50mM Tris-HCl (pH 7.5 at 25°C), 10mM MgCl₂ and 1mM DTT

Quality Control Assay Data

No degradation of RNA was observed after incubation of 5 units of DNasel with 160ng RNA for 4 hours at 37°C.

SinaClon BioScience

www.sinaclon.com
 Tel: +98(0)21 4463 0050-51
 +98(0)21 4466 5156

Customer Service:
 +98(0)21 4463 3016
 +98(0)9023120059
 Place your order: order@sinaclon.com